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Soliton solutions of the one-dimensional (1D) complex Ginzburg-Landau equations (CGLE) are analyzed.
We have developed a simple approach that applies equally to both the cubic and the quintic CGLE. This
approach allows us to find an extensive list of soliton solutions of the CGLE, and to express all these solutions
explicitly. In this way, we were able to classify them clearly. We have found and analyzed the class of solutions
with fixed amplitude, revealed its singularities, and obtained a class of solitons with arbitrary amplitude, as
well as some other special solutions. The stability of the solutions obtained is investigated numerically.

PACS number(s): 42.65.—k, 47.20.Ky, 47.27.Te

L. INTRODUCTION

Many nonequilibrium phenomena, such as processes in
lasers [1-3], binary fluid convection [4], phase transitions
[5], and wave propagation in nonlinear optical fibers with
gain and spectral filtering [6—8], can be described by the
generalized complex Ginzburg-Landau equation (CGLE).
We write it here in the form used in nonlinear optics,

i+ 5 WP y=idy+iely|*y+iByy,
+iu|glty— ]|ty (1)

where ¢ is the retarded time, z is the propagation distance,
8, B, €, u, and v are real constants (we do not require them
to be small), and ¢ is a complex field. For the specific case
of the optical fiber mentioned above, the physical meaning of
these quantities is the following: ¢ is the complex envelope
of the electrical field, & is the linear gain at the carrier fre-
quency, B describes spectral filtering (8>0), € accounts for
nonlinear gain-absorption processes, u represents a higher
order correction to the nonlinear amplification-absorption,
and v is a higher order correction term to the nonlinear re-
fractive index. Equation (1) has been written in such a way
that if the right-hand side of it is set to zero we would obtain
the standard nonlinear Schrodinger equation (NLSE).

If the coefficients &, B, €, and v on the right-hand side
are small and v=0, then solitonlike solutions of Eq. (1) can
be studied by applying perturbative theory to the soliton so-
lutions of the NLSE [9,10]. This approach, however, cannot
give all the relevant properties of solitonlike pulses and the
regions in the parameter space where they exist. Finding ex-
act solutions is an important step for understanding the full
range of properties of the complex CGLE, thus helping to
predict the behavior resulting from an arbitrary initial condi-
tion. We consider both the cubic and the quintic CGLE, and
derive all soliton solutions for both cases following the same
procedure. In this way, we cover the solutions which were
known before and obtain other solutions.
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The case of the cubic CGLE has been studied extensively
(see, e.g., [11-14]) and its general solution, i.e., pulse with
fixed amplitude, is known. Nevertheless, we found that an
important class of solitonlike solutions had been overlooked.
As we investigate the solutions with fixed amplitude more
carefully, we notice that it becomes singular at some values
of the parameters, corresponding to special line on the
(B, €) plane. Although the solution with fixed amplitude does
not apply in this case, a new class of solutions arises, namely,
the class of arbitrary-amplitude solitons. We present an ana-
lytic expression for this class of solutions.

The case of the quintic CGLE has been considered in a
number of publications using numerical simulations, pertur-
bative analysis, and analytic solutions. Perturbative analysis
of the solitons of the quintic CGLE in the NLSE limit has
been developed by Malomed [10] and Hakim, Jakobsen, and
Pomeau [15]. The existence of solitonlike solutions to the
quintic CGLE in the case of subcritical bifurcations (€>0)
has been shown numerically [16,17]. A qualitative analysis
of the transformation of the regions of existence of the pulse-
like solutions when the coefficients on the right hand side
change from zero to infinity has been done by Hakim, Jakob-
sen, and Pomeau [15]. An analytic approach based on the
reduction of Eq. (1) to a three variable dynamical system
which allows one to get exact solutions for the quintic equa-
tion has been developed by van Saarloos and Hohenberg
[18,19], although solutions in explicit form have not been
written.

The most comprehensive mathematical treatment of the
exact solutions of the quintic CGLE using Painlevé analysis
and symbolic computations is given in the recent work by
Marcq, Chaté, and Conte [20]. The general approach, used in
[20], is the reduction of the differential equation into a purely
algebraic problem. However, the technique used in [20] as-
sumes that analytical results can be obtained in a reasonable
time only by using computers. More important, the final for-
mulas for the pulselike solutions in [20] have parameters
which are expressed implicitly through the coefficients of
CGLE and still need some work to calculate the pulse shapes
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numerically. For this reason, the use of complicated tech-
nique and the aspiration to find all type of solutions (pulses,
fronts, sources, and sinks) did not allow the authors of [20]
to classify fully the pulselike solutions. In particular, the so-
lutions with arbitrary amplitude, algebraic solutions, and flat-
top pulses were missing in their analysis. Moreover, the
range of existence and stability were not discussed, even
briefly. The great diversity of possible types of solutions re-
quires a careful analysis of each class of solutions separately.
This is the reason we have concentrated our effort in this
work only on pulselike solutions. In this way we are able to
find in explicit form and classify all the solutions of this
restricted class.

We propose a relatively simple method which allows us to
obtain and classify the diversity of pulselike solutions de-
scribed by our ansatz. Thus we obtain the class of solutions
with fixed amplitude, then we reveal its singularities and
isolate several special solutions, including a class of
arbitrary-amplitude solitons, the family of flat-top solutions,
a class of algebraic solutions, and the chirp-free solutions.
Although these solutions do not cover the whole range of
parameters due to the restrictions imposed by our ansatz they
can serve as a basis for further generalizations.

Preliminary studies of the stability of our analytic solu-
tions show that the majority of them are unstable relative to
small perturbations. However, the whole class of solutions
with arbitrary amplitude is stable in both cubic and quintic
cases. This fact allows us to suppose that these solutions can
have a variety of real applications. Another example of stable
solitons is the class of flat-top pulses. We give in this work
only a few numerical examples of stable propagation. A
more detailed study on their stability will be presented else-
where.

The paper is organized as follows. The general ansatz and
the analytical procedure are described in Sec. II. Exact solu-
tions of the cubic CGLE are described in Sec. III. The quin-
tic CGLE solutions are obtained and analyzed in Sec. IV. We
discuss the results obtained, with possible applications and
generalizations, in Sec. V. Finally, we summarize in Sec. VI.

II. ANALYTICAL PROCEDURE

Let us consider first the stationary solutions of Eq. (1)
with zero transverse velocity. This happens when 8+ 0. The
case B=0 is considered in a special section. Hence we look
for a solution of the form

W(t,z) =A‘(t)exp(—iwz), 2)

where w is a real constant. The complex function A(#) can
always be written in an explicit form as

A(t)=a(t)exp[id(1)], 3

where a and ¢ are real functions of ¢. By inserting Egs. (2)
and (3) into Eq. (1) and separating real and imaginary terms,
we obtain

w— 22+ Bdp"a+2Bd'a’ + ta"+a*+va’=0,
2 2

(—6+B¢'*+ 5 ¢"a+¢'a’—Ba"—ea’— pa>=0,
“4)

where a prime stands for differentiation with respect to ¢.
Let us now assume that

$(t)=po+d Infa(r)], )

where d is the chirp parameter and ¢, is an arbitrary phase.
We suppose ¢ =0 for simplicity. Equation (5) is, obviously,
a restriction imposed on ¢(t) because the chirp could have a
more general functional dependence on ¢t. However, this re-
striction allows us to find some families of solutions in ana-
lytical form. For the cubic case, our ansatz covers all pulse-
like solutions. In the quintic case the solutions reported in
this paper are only those which can be represented in the
form (3), (5). Equations (4) become then

1 2 aIZ
_ " )z 3 5_
a)a+(2+Bd>a +(Bd 2) P +a’+va’>=0,

d " d 2 a'z 3 5
— da—+ E_—ﬁ a”+ §+Bd T—Ea —Ma =0. (6)

Now, we have two second order ordinary differential equa-
tions (ODE) relative to the same dependent variable, a(?).
To have a common solution, the two equations must be com-
patible. In general, this is not the case. However, for this
particular system, they can be made compatible by a proper
choice of the parameters.

To find the conditions of compatibility we apply the fol-
lowing procedure. We eliminate the first derivatives from the
set of Egs. (6) to get

d1+d2 1 42a" d+ d*+ eBd «d) 2
7( Y(A+ABY) -+ 5+ pd +efd— ——]a

+

wd
a*+ 7(1+2,3d)

d d?
v 5+Bd +u ,Bd—j)

d2
+5(,3d— 7)20. @)

After integrating Eq. (7) we have

A TURE Y CCIGE LR V. e
7 JA+AB)—y + 5|5+ Bd"+efd— ——|a

. V(i-i-ﬁdz)-i-,u(ﬂd—{) a*+ 3‘1(1+2ﬁd)
31712 2 2
d2
+ 5( Bd— 7) =0. (8)

The integration constant is zero for solutions decreasing to
zero at infinity.

On the other hand, we can eliminate the second derivative
from Egs. (6), obtaining
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d ) 2a’2 d € )
Z(l"‘d )(1+4ﬁ )?+(B ————— 6,8d a

d 1 4
- v(z—ﬁ>+ﬂ(ﬁd+5) a
wd 6
+wB——2——§—5Bd:0. 9)

These last two equations must coincide. Hence the following
set of three algebraic equations must be satisfied:

v(4d+2Bd*—6B)+ w(8Bd—d>*+3)=0,
3d+2Bd*>—4B+6eBd+2e— ed*=0,
2w(d— B+ Bd*)+ (1 —d*+4Bd)=0. (10)

Equations (10) are the conditions of compatibility for Egs.
(6).

If both coefficients u and v are nonzero, then the first of
these equations gives the relation between the four param-
eters €, B, u, and v when the solution exists in the form (3),
(5). The parameter d can be found from the second of Egs.
(10),

3(1+2eB)=V9(1+2€B)’+8(e—2p)°
TRET 2(e—28B) :

(11)

This is an important result, which shows that (i) d can be
found in terms of B and € only, and (ii) the expression for d
is the same for both the cubic and the quintic CGLE.

From the third equation in (10) we obtain for @

8(1—d*+4Bd)
C 2(d—-B+BdD)

w=

(12)

Now taking into account Egs. (10)—(12), and after some
cumbersome transformations, we can rewrite Eq. (9) [or Eq.

®)]:

a'? 2v

2(28-¢€) s
“ 4 2
7 " 8ga-a+3°

3d(1 i " a—prpl "
(13)

The coefficient in front of a* can equally be written in an-
other way:

2v _ 7’
8Bd—d*+3  3B—2d—Bd*

(14)

It is important to note that Eq. (13) is the consequence of the
set (6) and its solutions are equivalent to the solutions of (6).
Equation (13) is an elliptic equation and its solutions can be
found relatively easily. The most important for us is the pre-
sentation of coefficients in Eq. (13). They are reduced to the
simplest forms, which allows us to classify the solutions
mainly in terms of € and .

In what follows, we consider the solitons of the cubic and
the quintic CGLE separately. In each section we derive the
analytical solution and then look for special cases and singu-
larities.

An important issue is the stability of the exact solutions.
As the system described by Eq. (1) is nonconservative, the
stability can be analyzed only numerically. Such an analysis
includes solution of the linearized problem, i.e., calculation
of the perturbation eigenmodes and their growth rates. In this
paper we are using the results of this analysis to present the
region of parameters where the solutions are stable. In these
cases we present the numerical results of the propagation of
the exact solution with an added small perturbation. In the
cases of solutions with arbitrary amplitude we carried out
numerical solution of Eq. (1) with initial conditions in the
form of exact solution with added small perturbation

Po(t) = hy(t) +A ¢pert(t)7 (15)

where a small real constant A is the amplitude of the sym-
metric or antisymmetric perturbations, respectively. For sim-
plicity, we chose as the perturbation function the solution
itself, (1), or its first derivative diy(¢)/dt. The exact per-
turbation function would necessarily grow out of one of
these functions.

We conclude this section by analyzing the region of pa-
rameters, where we can expect stable pulses. The parameter
B clearly must be positive, in order to stabilize the soliton in
the frequency domain. We suppose 6<0 to provide the sta-
bility of the background. In this case, pulses can exist only
for € above the line given by Eq. (19) below. Finally, we
choose u<<0 to stabilize the pulse against the collapse.

III. SOLITONS OF THE CUBIC CGL EQUATION

A. Solitons with fixed amplitude

First we concentrate our efforts on the cubic CGLE, that
is in Eq. (1) with v=w=0. Then Eq. (13) reduces to

a'? 2(2B—¢€) S
tsaarap " a—prpr % 19

which has the solution:

a(t)=BC sech(Bt), 17

_[3d(1+4p8%) 3 8
““Na@p—a > P Napgrpe ¥

and d is given by Eq. (11) after choosing the minus sign in
front of the root. The second value of d leads to an unphysi-
cal solution, as the expression under the square root for C
becomes negative. Solution (17) has been found by Pereira
and Stenflo [12] (see also [11,13,14]). An important feature
of the solution (17) is that its amplitude and width depend
uniquely on the parameters of the equation. This is a com-
mon property of solutions in nonconservative systems. In
other words, (17) is the solution with fixed amplitude.

To find the range of existence of the solution (17), note
that on the plane (3, €) the denominator in the expression for
B is positive below the curve S given by

3Jy1+4B°—1

4+188°

where

€= (19)
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FIG. 1. Line (19) (the line S) on the plane €,8 where the solu-
tions with fixed amplitude [(17),(35)] become singular and where
the classes of special solutions with arbitrary amplitude [(21), (41)]
exist. This plot applies for both the cubic and the quintic cases.

and negative above it (see Fig. 1). Hence, for the solution
(17) to exist, the value & must be positive below the curve S
and negative above it. As this solution exists almost every-
where on the (3, €) plane, we call it the general solution. The
curve S itself is the line where this solution becomes singu-
lar, i.e., its amplitude BC tends to infinity, while the width
1/B vanishes.

To find the stability range of the solution (17), we recall
from the perturbation theory that the solution is stable pro-
vided 6>0 and e<pB/2. However, the perturbation theory
can be applied only for | 8|,|8|,| €| << 1. On the other hand, the
curve S separates the two regimes at any values of these
parameters. It has two limits,

e~ B/2 for B<1, €—1/3 for B>1, (20)

so at small B the curve S coincides with the stability thresh-
old given by the perturbation theory. We suppose, using this
observation, that the curve S separates the regions of stable
and unstable solitons on the plane B,e. Thus the solution
(17) exists and is stable below the curve (19) for §>0. This
conjecture has been checked in our numerical simulations. It
is presented schematically in Fig. 1.

On the other hand, for positive linear amplification
(6>0), the background state (¢/=0) becomes unstable. If
the initial conditions are close to the exact solution (17) and
6<1, this instability develops slowly and the soliton can
propagate distances up to zy~ & . Beyond that, radiation
waves growing linearly from the noise become appreciable
and can distort the soliton itself. The distance z, can be large
enough to observe soliton interactions [8]. This situation is of
interest for soliton-based communication lines [6,7]. How-
ever, in other problems & can be large, so z, is small. The
general conclusion is that either the soliton itself or the back-
ground state is unstable at any point in the plane (e, /3). This
means that the total solution is always unstable.

We have to emphasize the importance of the line S. For
the solution with fixed amplitude it gives the range of exist-

ence, singularity, and stability. Moreover, as we will see in
the next section, another significant class of solutions exists
on this line.

B. Solution with arbitrary amplitude

It is easy to see that the solution (17) does not exist on the
line (19). However, if we also impose the condition §=0, a
new solution, valid only on the line (19), can be found:

a(t)=GF sech(Gt), (21)

where G is an arbitrary positive parameter, and d, w, and F
are given by

T

oY (22)
(A1) L 14487
- 432 G=— ZB G >

(23)
- d\/—HTBi 12
- 2€
_[eropTrap(rage-n)t
- 28231 +4B87~1)

The solution (21) represents the arbitrary-amplitude soliton.

The reason for the existence of the arbitrary-amplitude
solutions is that, when =0, the cubic CGLE becomes in-
variant relative to the scaling transformation $¥—G,
t—Gt, z—G?z. Hence, if we know a particular solution of
this equation, the whole family can be generated using this
transformation. The singularity of the solution (17) and ex-
istence of the arbitrary-amplitude solutions were discovered
in [21], although the analytical solution was not found. Note
that all the parameters of the solution (21) (except G) and the
coefficient € are expressed in terms of .

It can be shown that the arbitrary-amplitude solution (21)
arises as the limit of the fixed-amplitude solution (17) for
€— €g. To reveal this, we analyze the amplitude-width prod-
ucts, C for the solution with fixed amplitude and F for the
arbitrary-amplitude solution. At the line of singularity .S, the
amplitude-width product C remains finite for the general so-
lution (17) and has a finite limit on the line. This limit con-
cides with the amplitude-width product F (see Fig. 2).

We have found, from numerical simulations, that the class
of arbitrary-amplitude solutions is stable relative to small
perturbations at any point of the line S. If we take an initial
condition in the form of a superposition of the exact solution
(21) and a small symmetric perturbation, eventually a sta-
tionary solution with some new value of G will be formed,
and the shift in G will be proportional to the amplitude of the
perturbation. For small 3, the stationary solution (21) can be
formed from the chirp-free initial condition (?)
= 7 sech(#nt) as well. Figure 3 demonstrates the steady
propagation of three well-separated solitons (21) with
G=0.75, 1, and 1.5.

The most important feature of these solutions is that the
background state =0 is also stable because 6=0. This



1194 AKHMEDIEV, AFANASJEV, AND SOTO-CRESPO 53

Amplitude—width products F, C

0.0 0.2 0.4 0.6 0.8 1.0
Coefficient g

FIG. 2. Amplitude-width products C and F versus S8 for the
solution with fixed amplitude of the cubic CGLE and for the solu-
tions with arbitrary amplitude, respectively.

means that, by removing the linear gain from the system and
applying a special relation between the coefficients € and
B, we can achieve the stable propagation of these solitons on
the stable background. It is remarkable that this class of so-
lutions is the only family of stable pulses in the cubic model.

C. Chirp-free soliton

Besides the singularity on the line (19), the solution (17)
does not apply on the line e=24, as C then becomes inde-
terminate (d —0 when e—2 ). However, the soliton ampli-
tude remains finite in the vicinity of this line on the (3,€)
plane for finite fixed &. It follows from Eq. (11) that for
€=2p the chirp parameter d=0, and from Eq. (12) that
o= 6/2. Equation (13) becomes

a'? )
— +a’+ —==0. (25)
a- B

Its solution is

&
T
100

FIG. 3. Simultaneous propagation of three soliton solutions with
different amplitudes of the cubic CGL.

—/-2 h(\/—é) 26
a(t)= 5 Sec Bt. (26)

The coefficients 6 and 8 must have opposite signs for this
solution to exist. As d=0, the solution (26) does not have
any phase chirp, in contrast to other soliton solutions of the
CGL equation. This happens because of the special choice of
the coefficients. In this case the complex constant
(1—i2pB) can be factorized out from Eq. (1) when it is re-
duced to an ODE in terms of a(t).

The pulse itself is unstable, as these solutions are located
on the plane (€,8) above the curve (19) (see Fig. 1). We
have confirmed this instability with numerical simulations.

IV. SOLITONS OF THE QUINTIC CGL EQUATION
A. Relation between coefficients

The soliton solutions of the quintic CGLE exist for a wide
range of values of the coefficients 8, €, u, and v. The
ansatz (5) is the condition that restricts this range by impos-
ing the relation [the first of Egs. (10)] on them. Using Eq.
(11), this relation can be rewritten as a linear equation in d:

12¢B%+4e—28
v e—2p

2eB—168%*—3
d—2ﬁ}+/x[——%—ﬂ*—'d+l =0.

2B
27
We can also eliminate d completely from the first two Eqs.

(10) to obtain the following relation between the four coef-
ficients B, €, u, and v:

27(u—2Bv)(1+2€B)? _32(v+ 2Bu)?
(e=2B)° (2Bv—pu)
o +2:l_g)2(;+2/3#) —u+2Bv=0. (28)

Solving (28) for €, we obtain

4Bu*+30uv+1208%uv+4 B> +3U
E:

—uP+12Burv+3202+108B8° v (29)

where

U=\(n—28v) 232+ 16821+ 4 Buv+ 42+ 128%17).
(30)

This expression is the relation between the coefficients in
explicit form. Due to the existence of several branches, each
of them must be analyzed separately. In contrast to the cubic
equation, the general solution exists for both signs in the
expression (11) for d. Equation (28) also applies to both

~cases. Hence four different cases have to be considered.

Now we consider zeroes of u and v in the (3,€) plane
which are results of the relation (29). If in the expression
(11) for d we choose the negative sign (d=d_), then p has
to be zero on the line [solid line in Fig. 4(a)]

1-3J1+332

8+2782 (31)

€=
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0.3 1+31+382

e=p

o T Qyo7p2
0z | (a) d=d 8+278

01 u>0, v>0 and v becomes zero on the two lines [dashed lines in Fig.
g or p<0, v<0 4(b)] defined by

0
\\ L= e=+3\168°+3—48. 33)
w -0.1 — /

The value of v changes sign on these lines [see Fig. 4(b)].

(32)

0.2 * These conclusions can be made more specific when we con-
0.3 [ u<0, v>0 sider regions of existence for solutions.
- or u>0, v<0 In what follows we consider solutions which exist when
0.4 at least one of the coefficients u or v is nonzero, and express
05 b the solutions in terms of B, €, and v. Using Eq. (14), the
o 0.4 0.8 10 16 5 solutions can alternatively be expressed in terms of 3, €, and
B .
20 B. Solutions with fixed amplitude
b _ _ By using the substitution f=a? we can rewrite Eq. (13) in
15 f (b) d—d+ <7 the form
10 E” pu<0, v>0 ///// \F_O f/2+ 8y - 8(2B—¢) 458 B
5 F-———7 " u<0, v<0 f*  8Bd— d2+3f 3d(1+4p8%)’ d—B+Bd>
; (34)
w 0 |
5 -0 This is again an elliptic-type differential equation. Bounded
I S u>0, v<0 = solitonlike solutions exist only if 45/d— B+ Bd*>0. The
10 [ > positive solution of (34) is [22]
g SO v=0
15 F p>0, v>0 > \/ 2fif
: o foy= = —_—, (35
-20 b s (f1+f2) = (fi—f2)cosh(2aVfi|f]t)
0 0.4 0.8 1.2 1.6 2
B where
FIG. 4. Relation between the parameters w and v on the semi- \/ \/ (36)
plane €, 8 for which the quintic CGL has analytic solutions. (a) The 8Bd— d2 +3 3—2d— de ?
case of negative sign in Eq. (11). (b) The case of positive sign in
Eq. (11). and f, and f, are the roots of the equation:
The values u and v have the same sign in the region above 2v ,, 2(2B—e) 2 B
this line and opposite signs below it [see Fig. 4(a)]. 8Bd—d*+3 ! 3d(1+4p8%)’  d— B+ Bd> =0,
If we choose the positive sign in the expression (11) for d 37)
(d=d.), then u becomes zero on the line [solid line in Fig.
4(b)] namely,
5 . \/ 5 2, 18 5d%v(1+4B%)?
fra= (8Bd—d>+3). (38)

6dv(1+48%)

On the line (33), this expression must be replaced by

. 9 8d*u(1+48%)?
e Vs o (3B—2d— pd*)(d— B+ pd°) g
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We now discuss the conditions under which the soliton
solution (35) exists. Clearly, one of the roots (we choose
f1) must be positive. The second one can have either sign. If
it is also positive, we choose f;<<f,. Two situations arise.

(1) 2v/88d—d>+3>0. Then, f, is positive, f, is nega-
tive, but (28— €)/d can have either sign. Hence, both values
of d are suitable. At any values of € and at any >0, the
value (88d—d?+3) is positive when we use d=d_ . If we
use d=d . , the value (8 3d—d*+3) is negative in the area
between the two dashed lines in Fig. 4(b) and positive oth-
erwise. Therefore v must be positive in the former case and
its sign changes on the dashed lines as in Fig. 4(b) in the
latter one.

(2) 2v/88d —d*+3<0. Both roots f; and f, are positive,
so (28— €)/d must be positive. Only d=d_ satisfies this
criterion. The value (8 8d —d?+3) is always positive in this
case, and v can only be negative. This case is shown in Fig.
4(a).

In both cases the solution is defined by Eq. (35). The
above analysis shows that, for a given set of parameters, e,
B, S, and v, in the area between the two dashed lines in Fig.
4(b), there are two solutions when v is negative, but only one
when v is positive. Conversely, outside of this area, there are
two solutions when v is positive and only one when v is
negative. Besides, as 6/d — B+Bd2 must always be positive,
the restrictions on the sign of & are the same as in the cubic
case (see Fig. 1).

We can see that the solution (35) has two different
branches for the same set of parameters. It can be shown that
one of these branches coincides with the solution (24) of
[20]. However, to show this, the solution (24) of [20] needs
to be expressed explicitly in terms of the parameters of the
CGLE. This task still needs some complicated algebraic
transformations.

The solution (35) is unstable for arbitrary choice of pa-
rameters, i.e., for nonzero A in Eq. (15) the amplitude of the
symmetric perturbation grows exponentially. However, in
special cases of the flat-top soliton the perturbation does not
grow.

C. Singularity at v—0~

When v is negative, one of the solutions has a singularity
at v— 0. The value (28— €)/d must be positive and finite.
Then f, has the limit 38d(1+48%)/2(d— B+ Bd*) (28
—¢€)? and f, goes to infinity as (e—28)(88d—d*+3)/
3dv(1+48%] and so the soliton amplitude goes to infinity.
The singularity does not occur when »—07. The second
solution in the limit v— 0~ coincides with the solution (17)
which applies in the case of the cubic CGLE. Clearly, this
singularity is trivial and is not related to any new solution.

D. Solution with arbitrary amplitude

Another singularity appears at
d— B+ Bd*=0. (40)

This occurs on the same line S in the (3, €) plane as in the
cubic case [see Eq. (19)]. The singularity exists when the

&
B

TTTTTT
i

FIG. 5. Simultaneous propagation of three soliton solutions with
different amplitudes of quintic CGL.

roots f; and f, have opposite signs. If 8 and e satisfy (19)
and we have 6=0, the class of soliton solutions with arbi-
trary amplitude exists:

3d(1+4B%)P
()= , (41)
(2B—¢€)+S cosh(2/Pr)
where P is an arbitrary positive parameter and
18 d*v(1+4p%)?
_ RY)
S \/(Zﬁ €)°+ (8Bd—d+3) P. (42)
The values d and w are given by
e Vi+48%7—1 3
=~ 25 (43)
1+48%
w=—d 2B (44)

We found from numerical simulations, that this class of
solutions is stable at any point of the special line S and for
any P in Eq. (41). The background state is also stable as
6=0. Figure 5 shows the pulse profiles of three of these
solutions, with P=2, 1, and 0.5, respectively, as they propa-
gate along the medium. For this specific example we chose
B=v=0.1. No changes on the profiles are observed after
propagating a very long distance. These pulses are the only
analytic solutions which are stable in the whole region of
parameters where they exist.

E. Flat-top solitons

The soliton (35) becomes wider and flatter as the two
positive roots approach each other. When f;=f,, the soliton
splits into two fronts with zero velocity. Each of them can be
written in the form (we ignore the translations along f)

fi

- 1+exp(*afit)’ (45)

f(0)
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FIG. 6. Shapes of solutions (35) when the two roots f; and f,
are close to each other. Separation into two fronts is the result of
this proximity. Pulses marked 1, 2, 3, 4, 5 correspond to m=1, 3, 5,
7, 9, respectively.

where

(e—2B)(8Bd—d*+3)
1 6dv(1+48%) ’

(46)

and the sign in (45) determines the orientation of the front.
The two roots f; and f, become identical when

18 Svd*(1+4B%)?
(d— B+ Bd*)(8Bd—d*+3)"

(2B—e€)’=— (47)

This condition involves all parameters of the equation. De-
pending on & and v it can exist at any point of the plane
(e.B).

The transition from general solution (35) to flat-top solu-
tion (45) for f;—f, is shown in Fig. 6. To plot this figure,
we express 6=¢6, from Eq. (47) and take
6=061(1—-10""), with m having the values 1, 3, 5, 7, and 9.
The top of the soliton becomes flatter as the roots become
close to each other.

If f1=f, exactly, the width of the pulse goes to infinity
and the pulse decomposes into two fronts. Note that in the
region of nonzero intensity solution phase ¢(¢) tends to sta-
tionary value exponentially. So, if we combine the two fronts
(45) with opposite orientation to form a wide, rectangular
pulse of finite width, the influence of one front on another is
exponentially small. In other words, the two fronts (45) can
match each other without a domain boundary between them
(cf. [19D.

Pulses and fronts have usually been considered as differ-
ent solutions of the CGLE [18—20]. Our results show that
they can be transformed to each other by changing param-
eters of the system. Moreover, our results give, at least
partly, the range of parameters where we can expect smooth
transition from solitons to fronts. Stable stationary flat-top
pulses were observed experimentally in binary fluid convec-
tion [24].

F. Algebraic solution

If 6=0 and (B,€) is not located on the line (19), then
®=0 and one of the roots of Eq. (37) (say f,) becomes zero.
The other root is

FIG. 7. Evolution of the algebraic soliton at 8=0.15, v=0, and
pm=—0.2. The parameter d is chosen with plus sign in Eq. (11).

(e—2B)(8Bd—d>+3)
r 3dv(1+487)

(48)

Equation (34) can then be written in the form

fr2+akf=f11F7=0, (49)

where ko=2v/(88d—d*+3). The solution to this equation
is a Lorentz function:

hi

f(t):w- (50

The values f; and kq must be positive, which restricts the
allowed values of the coefficients of the equation for this
solution to exist.

The algebraic soliton is unstable for the full range of the
parameters where it exists. We have carefully studied the
propagation dynamics of the corresponding solitons for
v=0, and observed that it transforms into two fronts when
w is negative (Fig. 7).

The algebraic solution represents a special, weakly local-
ized limit of the solution with fixed amplitude (35). Note that
algebraic solitons exist and play an important role in other
integrable and nonintegrable systems, including NLSE [22]
and its generalizations [27].

G. Chirp-free soliton

Another degenerate case occurs when €=28 and
wm=2Bv. Equation (34) then reduces to

8 48
124 5 2
f +3vf4+4f*+ Bf 0. (51)

The solution to this equation is:

-26
f()= . (52)

]—\/1~@ h(Z\/—E)
Bl 38 cos Bt

Clearly, this solution exists when 6/ is negative and v posi-
tive. The value d=0, and the solution to the CGLE does not
have any phase chirp. This solution arises because the coef-
ficients of the equation are chosen in such a way that a com-
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FIG. 8. Perturbation growth rate of the fixed-amplitude solutions
for B=0.5, v=-0.5, 6§=—0.1. The solid line is for d=d_, the
dashed line is for d=d, .

plex constant can be factored out from Eq. (1) when it is
reduced to an ODE in terms of f=a?. The ODE then be-
comes purely real.

Numerical simulations show that the chirp-free pulses
given by our exact solutions are unstable at any values of
parameters. Nevertheless, we may expect the existence of
chirp-free pulses beyond the limitations given by Eq. (29).
Chirp-free solutions are important in different applications.
One of them is the problem of getting the chirp-free pulse at
the output of an optical laser. Such a pulse could be used in
transmission lines without additional transformations. While
the pulse amplitude can be relatively easily adjusted by
changing the values of amplification or damping &, control-
ling the chirp is a much more difficult task and needs the
knowledge of other system parameters. Our analysis shows,
at least partly, the range of these parameters where we can
obtain chirp-free pulses.

H. Traveling pulses

If B=0 then solitons with nonzero velocity (traveling
solitons) become possible. These solutions can be obtained
using simple transformation because for =0 Eq. (1) has an
additional symmetry, namely, it is invariant relative to the
Galilean transformation. As a result, traveling pulselike so-
lutions can be obtained from zero-velocity ones using this
transformation

2
z/f’(z,t)=z//(z,t~vz)exp(ivt—iv7z). (53)
Hence we can use the fixed amplitude solution of Sec.
IV B, set 8=0, and use the transformation (53) to get the
whole family of travelling pulses. Note, that all the analysis
of the Sec. B is valid in this case. The critical points in € are
intersections of special lines in Figs. 1 and 4 with the vertical
axis 8=0. This last example completes the classification of
possible pulselike analytic solutions for Eq. (1).

1. Stability of solutions with fixed amplitude

We studied the stability. of the fixed-amplitude solution
(35) numerically, using the propagation approach described
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FIG. 9. (a) Evolution of the amplitude and (b) the width of the
perturbed soliton with fixed amplitude for different values of f; and
far 6=—0.2365, B=0.2, u=-—0.036 13 (f,=4.996, f,=9.618)
(triangles); f,=5.673, f,=8.941, &=—0.2496 (diamonds);
f1=6.576, f,=8.038, 6=-0.2602 (squares); f,=7.076,
f>=7.538, 6=—0.2625 (crosses).

above [Eq. (15)] and the linearization technique (see, e.g.,
Ref. [28]). We found that the solution (35) is generally un-
stable, as the real part of the eigenvalue of the corresponding
linear problem (i.e., the growth rate) is positive. However,
the growth rate drastically decreases in the vicinity of
f1=/f,. Figure 8 shows the growth rate calculated for some
particular values of 6, B, and v, as € and u were varied. A
solution corresponding to d=d . exists only for negative €
and it is always unstable. A solution for d=d_ exists for
positive € and negative w, i.e., in the region where stable
propagation is possible. The growth rate for this a solution is
essentially smaller and vanishes for e— €, =0.4006. At this
point f;=f, and solution does not exist for e<e,, .

To study the development of the instability in the vicinity
of fi=f,, we applied the propagation approach. Our calcu-
lations show that if f; and f, differ more than twice, the
solution exhibits typical unstable behavior, i.e., perturbation
of the pulse amplitude grows exponentially (see Fig. 9, the
curves with triangles and diamonds). Initial perturbation of
the pulse amplitude affects the pulse width, which experi-
ences the same changes, i.e., if the amplitude grows, the
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Iy (t,z)]

FIG. 10. Stable propagation of a flat-top soliton. The parameters
chosen for this simulation are B8=0.5, €=0.4006, v=—0.5,
6=—0.1, and d=d_, which gives u=—0.227. The perturbation
added initially to the stationary solution is a uniform random func-
tion.

width also grows. However, as we choose f; and f, closer to
each other, the dynamics of the perturbed solution changes
drastically. First, the pulse amplitude initially evolves toward
the stationary value and only then does the perturbation be-
gin to grow, because the perturbation is not an exact eigen-
mode of the linearized problem. Secondly, the growth rate is
significantly reduced, altough the pulse is still unstable (Fig.
9, curves with squares and crosses). At the same time, we
notice that the initial perturbation of the pulse amplitude af-
fects the pulse width in such a way that after the perturbation
the pulse width acquires new value, and this change of the
pulse width depends on the value of the amplitude perturba-
tion. Such pulses can propagate a significant distance without
visible changes (Fig. 10). This shows, that the region of ex-
istence of zero-velocity fronts is really wider than is given by
our analytic expression (47).

V. DISCUSSION

In the above analysis we developed a technique which
allowed us to find pulselike solutions of the cubic and the
quintic CGLE following the same procedure. A particular
ansatz for the solution is assumed, which reduces the initial
partial differential equaiton (PDE) into a single elliptic ODE.
The technique is simple and allows us to find general as well
as special classes of soliton solutions of both the cubic and
the quintic CGLE. All solutions are written in explicit form
in terms of the parameters of the CGLE. This permits us to
make clear classifications and to find the regions in the pa-
rameter space where the particular classes of solutions exist.
We revealed two different classes of solutions: solutions with
fixed amplitude and solutions with arbitrary amplitude. We
also found, in analytic form, special lines in the parameter
space, where the solutions with fixed amplitude become sin-
gular.

For the cubic case, our solutions cover all possible pulses
including solitons with fixed amplitude and a class of
arbitrary-amplitude solitons. In the quintic case, the solution
can be explicitly written in a subspace of the full space of the
coefficients of a lower dimensionality. This is a consequence

of using the ansatz (5). This subspace is described by Eq.
(28).

Most importantly, we discovered stable classes of solitons
for both cubic and quintic cases. These are the above-
mentioned arbitrary-amplitude solitons which exist on spe-
cial lines in the parameter space where solutions with fixed
amplitude become singular. They can propagate long dis-
tances without any changes. In the case of the cubic CGLE
this class is the only stable class among all the stationary
pulses. In the case of the quintic equation the class of
arbitrary-amplitude solitons is also stable. Moreover, we
found one more example of stable propagation of flat-top
solitons at certain values of parameters. Other examples of
stable soliton propagation also exist as found in numerical
simulations [16] but they are beyond the set of solutions
described by our ansatz.

Our approach allows several possible generalizations. For
instance, the coefficients on the left-hand side of Eq. (1) also
can be varied. In particular, the same type of analysis can be
done when the factor 1/2 in front of the second time deriva-
tive becomes negative (which for the optical fiber case would
mean that we are moving to the normal dispersion region).
Possibly, the most important target for the generalization is
the ansatz (5). Potentially, the inclusion of one more param-
eter in this ansatz may allow one to find a more general
solution of the quintic CGLE. In this sense, our solutions can
serve as the basis for this expansion. Besides, the perturba-
tion theory can be developed, such that our set of solutions
can be used as unperturbed objects, rather than the solutions
of the NLSE. This is one of the ways to step out beyond the
limitations of Eq. (29).

It may be interesting to compare our solutions with the
results obtained from the perturbation theory. The classic
adiabatic soliton perturbation theory, taking the solutions of
the NLSE, as the unperturbed set, has been commonly used
for consideration of the complex Ginzburg-Landau equation
[10,16]. To understand the relation between our results and
results of the perturbation theory (PT), we note that the stan-
dard PT have some major limitations. It can be applied only
if the coefficients in the right-hand side of Eq. (1) are small.
It does not give the value of the pulse chirp. Moreover, Eq.
(1) has pulse solutions for positive dispersion as well (minus
sign in front of the second derivative). Our method allows us
to obtain these solutions, although we did not consider this
case in this paper. On the other hand, the standard PT cannot
be applied for the positive dispersion case because the NLSE
itself then does not have bright-soliton solutions. Despite
this, however, the PT gives some valuable results for both
cubic and quintic cases.

For the cubic case, PT gives the limit for the special line
S at small 8. The PT correctly predicts that for 6>0 the
solution with fixed amplitude exists below this line and it is
stable, while for §<<0 the solution exists above this line but
it is unstable. At the line itself the solution does not exist as
its amplitude becomes infinite. Moreover, the PT would al-
low us to predict the arbitrary-amplitude pulses because their
existence follows from the scaling transformation. However,
the chirp-free pulses cannot be predicted in this way.

In the quintic case the PT in the form in which it has been
developed before [10,15] has an even more limited range of
applications, as it allows us to take into account only dissi-
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pative effects. The special solutions, including the class of
arbitrary-amplitude pulses, flat-top pulses, and algebraic
pulses, have not been predicted at all. On the other hand, our
solutions could not be compared with the results of the stan-
dard PT because the parameters in the right-hand-side of the
the CGLE cannot be reduced to zero simultaneously. If we
take v=0, for example, the parameter x4 must be chosen
higher than 3 V3.

Let us turn now to possible applications of our analysis.
The results of our work can be applied to different physical
problems. The CGLE appeared first in the theory of phase
transitions. Later it has been studied in plasma theory [12]
and traditionally has been used to describe binary fluid con-
vection [4,24]. These days, however, the most promising area
where the solutions of the CGLE can give a new view of the
problem is optical telecommunications and laser physics
[23]. Consequently, we discuss here only the use of new
solutions in this important area, leaving aside other possible
applications.

It is known that the cubic CGLE is a good model for
describing the optical transmission systems with guiding fil-
ters. The use of the nonlinear gain (€>0) in these systems
allows the reduction or suppression of the growth of linear
radiation. Our results show, in particular, that stronger spec-
tral filtering S~ 1 can be used in these systems than has been
considered before, B<<1. In this case Eq. (19), derived here,
gives the instability threshold. Our results show also that by
removing the linear gain from the system we can achieve
stable propagation of both the soliton and the background.
This possibility has not been discussed before.

The existence of singularities shows a simple and effec-
tive way to control the pulse parameters (say, in lasers) by
small variations in the “material parameters.” The existence
of solutions with arbitrary amplitudes can be used to switch
the system from a “rigid regime” with fixed-amplitude soli-
tons to a “soft” one with solitons having variable param-
eters. This can be done just by changing the parameters of
the system (the relation between the linear and nonlinear
gain, for example).

Note that the very range of parameters where the special
solutions exist is of great importance and many experimental
and numerical observations were performed in this range,
even if this fact was not explicitly realized. We illustrate this
using the example of arbitrary-amplitude pulses. Indeed, for
the systems described by the cubic CGLE (e.g., soliton trans-
mission systems), the main limitation is due to the growth of
linear radiation (instability of the background state). Emis-
sion of the spontaneous noise by amplifiers also contributes
to this effect. So, it is desirable to reduce this instability, and,
in order to do this, keep the excess linear gain § as low as
possible. At the same time, the soliton collapse (which oc-

curs if €> €g) also should be avoided. So the optimal regime
lies near the curve S, where the nonlinear gain and the spec-
tral filtering balance each other so significant contribution
from the linear gain is not necessary.

Another example of the soliton fiber system which has the
working regime near the curve S is the soliton fiber laser
with saturable absorption [25,26]. Such a laser is described
by the cubic CGLE, but the difference from Eq. (1) is that
the linear amplification coefficient 6 depends on the total
pulse energy E. In the mode-locked regime, & has small
negative value to stabilize the background state. If the pulse
energy increases, the absorption also increases and vice
versa. Clearly, stability of such a system depends on the
slope of 6(E) dependence. However, to provide the self-start
of the laser, 6 should have small positive value for £ much
smaller than the energy of the stationary pulse. So, again the
optimal regime lies near the S curve, where the nonlinear
gain and spectral filtering compensate for each other and the
absolute value of & can be kept small.

The system which is described by the quintic CGLE is,
for example, the soliton fiber laser with fast saturable absorp-
tion [21]. In this case the soliton is supported by nonlinear
gain and loses energy due to three effects: spectral filtering,
linear losses, and the quintic stabilizing term. However, even
small linear loss is enough to keep the background state
stable. So, the stationary state exists basically as the result of
balance between nonlinear gain, spectral filtering, and the
quintic stabilizing term; this proves the importance of the
study of the arbitrary-amplitude pulses in the quintic model.

VI. CONCLUSION

In conclusion, we developed a simple technique which
allows us to find pulselike solutions of both the cubic and
quintic CGLE, using the same procedure. For the cubic
CGLE, we have revealed the singularities of the fixed-
amplitude solutions, and found arbitrary-amplitude and the
chirp-free solutions. For the quintic CGLE, we have obtained
a class of fixed-amplitude solutions, studied its singularities,
and found several special cases. Among them are the class of
arbitrary-amplitude pulses, chirp-free pulses, the flat-top so-
lution, and others. We have investigated the stability of these
solutions by direct numerical simulations and found that
arbitrary-amplitude solitons are stable in the whole range of
parameters where they exist.
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